The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless.
نویسندگان
چکیده
The FGF receptor Heartless (HTL) is required for mesodermal cell migration in the Drosophila gastrula. We show that mesoderm cells undergo different phases of specific cell shape changes during mesoderm migration. During the migratory phase, the cells adhere to the basal surface of the ectoderm and exhibit extensive protrusive activity. HTL is required for the protrusive activity of the mesoderm cells. Moreover, the early phenotype of htl mutants suggests that HTL is required for the adhesion of mesoderm cells to the ectoderm. In a genetic screen we identified pebble (pbl) as a novel gene required for mesoderm migration. pbl encodes a guanyl nucleotide exchange factor (GEF) for RHO1 and is known as an essential regulator of cytokinesis. We show that the function of PBL in cell migration is independent of the function of PBL in cytokinesis. Although RHO1 acts as a substrate for PBL in cytokinesis, compromising RHO1 function in the mesoderm does not block cell migration. These data suggest that the function of PBL in cell migration might be mediated through a pathway distinct from RHO1. This idea is supported by allele-specific differences in the expressivity of the cytokinesis and cell migration phenotypes of different pbl mutants. We show that PBL is autonomously required in the mesoderm for cell migration. Like HTL, PBL is required for early cell shape changes during mesoderm migration. Expression of a constitutively active form of HTL is unable to rescue the early cellular defects in pbl mutants, suggesting that PBL is required for the ability of HTL to trigger these cell shape changes. These results provide evidence for a novel function of the Rho-GEF PBL in HTL-dependent mesodermal cell migration.
منابع مشابه
FGF8-like1 and FGF8-like2 Encode Putative Ligands of the FGF Receptor Htl and Are Required for Mesoderm Migration in the Drosophila Gastrula
BACKGROUND Mesoderm migration in the Drosophila gastrula depends on the fibroblast growth factor (FGF) receptor Heartless (Htl). During gastrulation Htl is required for adhesive interactions of the mesoderm with the ectoderm and for the generation of protrusive activity of the mesoderm cells during migration. After gastrulation Htl is essential for the differentiation of dorsal mesodermal deriv...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملFunctions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Drosophila melanogaster
Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF) signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step...
متن کاملHeartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila.
Drosophila possesses two FGF receptors which are encoded by the heartless and breathless genes. HEARTLESS is essential for early migration and patterning of the embryonic mesoderm, while BREATHLESS is required for proper branching of the tracheal system. We have identified a new gene, heartbroken, that participates in the signalling pathways of both FGF receptors. Mutations in heartbroken are a...
متن کاملFGF ligands in Drosophila have distinct activities required to support cell migration and differentiation.
Fibroblast growth factor (FGF) signaling controls a vast array of biological processes including cell differentiation and migration, wound healing and malignancy. In vertebrates, FGF signaling is complex, with over 100 predicted FGF ligand-receptor combinations. Drosophila melanogaster presents a simpler model system in which to study FGF signaling, with only three ligands and two FGF receptors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 131 11 شماره
صفحات -
تاریخ انتشار 2004